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Outline

• Requirements
• Methodologies, description and assessment
• Comparison of Algorithms, status of methods
• Assessment of Errors - short wave discriminants
• Long wave discriminants - preliminary results
• Conclusions
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Clear-Sky  Identification
Why is it Important?

• The AIRS Science Team needs to work with uncontaminated
(simple) data.  We (JPL) have attempted to collect applications
of clear sky detection algorithms from the Science Team and
define requirements based on these needs

• We are working to have algorithms defined for inclusion in
PGE by mid-October
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Uses of Clear-Sky Radiances

• Validation of radiometric calibration
– viewing of ocean surface, are the gains accurate, precision (noise)

valid, radiances biased?

• Forward model validation
– is the spectroscopy right, are there any unexpected “features”?

• Validation of cloud-cleared radiances
– are the cloud-cleared radiances equal to the original radiances for

clear footprints, are cleared radiances next to clear footprints
similar?
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Requirements
• One procedure will not satisfy all needs

– Trade-off between false clears and missed cases.
– Will need to boot-strap identification procedure as AIRS

algorithms and products improve

• Ordering of needs based on quality and amount of clear
data needed

Use Amount Accuracy
Forward model 10’s <  NeN

Radiance 1000/yr ~ NeN

Cloud-clearing 1,000’s 1-2 NeN
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Requirements
Assessment of the Quality

• Accuracy: an estimate of the maximum amount of
radiance from clouds at 4µm and 8.9µm.

• Will attempt to assign independent error to each footprint
– (will not be in place for  mid-October delivery)

• Why and how do we improve our yield rate while not
admitting cloudy scenes?

• Review proposed algorithms and provide an initial
assessment accuracy
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Procedure

• Seven algorithms were developed
– based on combinations of 5  methodologies
– applied a threshold against a discriminant to say cloudy true/false
– no attempts to gauge accuracy
– use long wave (9-11µm), visible during day, short wave

• JPL compared results and implemented some methods on
simulated data
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Methodologies

• Scene Coherency
– standard deviation or gradient of radiances in adjacent footprints or

3x3’s
– heterogeneity in scene is indicative of clouds

• Split Window
– regression of  2 or more channels (e.g. 9 and 11 µm) with differing

atmospheric transmissions

• Clear Scene Radiance Prediction
– difference of surface channel radiance with prediction using

correlative data, e.g. analysis, radiosonde, buoy....
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Methodologies (cont)

• Cloud Signature
– cirrus and water clouds have spectral signatures,
– similar to split window with different interpretation

• Cloud detection using Visible Channels
• Independent Data Sets (MODIS, GOES…)
• Output from Retrieval

• Last two are not viable, but useful for development
and quality assessment.
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Methods Incorporated in Submitted
Algorithms

Split Window Coherency
Cloud 

Signature
Radiance 
Prediction

Independent 
Instruments

GSFC 1st Pass Cloud Clearing Noise
JPL X X
JPL-HHA X
NOAA-LM X X X
NOAA-MG X X X
UMBC X X X
SSEC X X X X
Vis/NIR Cloudy pixel identification
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Assessment of Provided Data
• 9 granules of data 20 July 2002

– Day:    29, 110, 111, 127, 209
– Night: 16, 99, 164, 231

• Cloud contamination inferred from calculated - observed
radiances (K)
– noise-free, cloud-free, land emissivity equals 1

Day Night
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Bias Assessment
(Obs. - Calc)

Yield
Granule

Method 16 231
NOAA-LM 865 339
NOAA-MG 927 293
UMBC 111
JPL-SW 930 350
GSFC 212 54
JPL-HHA-SW 491 209
Wisc 845 372
JPL-HHA-LW 1051 473
Wisc-MODIS 125
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Conclusions
• No one method is best
• Bias is not perfectly anti-correlated with yield
• Quality is not correlated between methods

– Logically and’ing methods produces substantially lower yields, but
not consistently improved biases

• Errors on a per footprint level have not been addressed
• Various requirements suggest providing discriminants and

let user apply threshold
• Methods will not meet requirements
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 Hypotheses

• All methods have error sources.
– combining tests will not improve bias for correlated errors (bias

could enter from O-C assessment)
– combining tests will degrade yield if uncorrelated errors are not

combined.

• Quality may be improved by combining discriminants, not
tests

• Errors sources have not been addressed
– identify error sources on a method by method basis
– reduce by modifying discriminants  or combining to reduce errors
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Illustration of Error Sources
• Impact of errors on setting thresholds for discriminants

• Threshold is set to account for error broadened discriminant
– but if error source is broad compared to requirement, threshold must

be set high
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D
is

cr
im

in
an

t

Cloud Amount

0

0

D
is

cr
im

in
an

t

Cloud Amount

0

0



Cloud Detection
 -16-

AIRS Science Team Mtg
September 2002

 Chen/Fishbein/Gunson

Procedure

• Focus on night over ocean short wave discriminants
– coherency discriminants
– radiance prediction discriminants

• Optimize discriminants
– minimize errors using simulated data

• Explore characteristics globally
• Explore errors with focus granule

– 133 on 20 July 2002
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Radiance Prediction Discriminants

• Involves an estimate of surface temperature, corrections
for surface emissivity and atmospheric transmittance and
emission

• Example 1: emission angle and surface temperature

• Example 2: emission angle, surface temperature and
emissivity
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• Simulated Data, 240 granules on
2002 July 20
– No noise or clouds
– Filtered data for oceanic night time

footprints
Night (solar zenith angle > 90°)
Ocean (land fraction = 0.0)
Surface Temperature > 270K

–  756,254 footprints
• Precision of method good to 0.1K

Radiance Prediction Discriminants
Application to Cloud Free Data
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Radiance Prediction Discriminants
Error Sources

• Uncertainty of correlative surface temperature
• Uncertainty in  emissivity from angle/wind dependence of

emissivity model
• Uncertainty of transmissivity, primarily from water
• Modeling of solar reflected (daytime)
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Radiance Prediction Discriminant
Coherency

•  Absolute value of difference
– noise roughly

• Standard deviation of 3x3
– noise roughly

• Primary error source
– variability of surface temperature
– variability of emissivity from angle/wind dependence of emissivity

model
– variability of transmissivity from water and slant path

• Same error sources but through variability
• Can 2616 cm-1 coherency test be used during day?

NeN2

NeN
3
10
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Application to Observations

• Same conditions as simulated data
• Estimate global accuracy of methods with

intercomparisons
– independence of error sources
– same sources, but one is absolute and other is differences
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Accuracy of Methods
• As coherency threshold decreases second discriminant

reaches asymptotic width
– homogenous cloud ?
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Accuracy of Methods (cont)
• As Obs-Calc  threshold decreases coherency approaches

asymptotic width
– width much larger than previous thresholds
– local variability ?
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Error Estimates

• Histogram of coherency asymptotes when Obs-Calc = 1K
– suggests that prediction tests with this correlative data is no better

than 1K
– still potentially useful to remove uniform cloud decks.

• Accuracy of coherency test more difficult to ascertain
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Granule 133 Focus Study
2616 cm-1 Brightness Temperature

• Tropical depression 18° N, 180°W
• ITCZ deep convection near 4° N

• Bands of cirrus east of depression
• Region of potential clear sky south of

depression
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Granule 133 Brightness Temperature
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Granule 133 Coherency
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Surface vs Brightness Temperature
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Surface vs Brightness Temp (cont)
• Has a clear spot been detected?

– ~1K colder than surface temperature
– has gradient in approximately right direction

• How reliable is the surface temperature?
– derived from buoy and AVHRR (Navy)
– AVHRR tuned to match buoy
– how accurate is hole searching with AVHRR?

• If this is a low cloud how to distinguish it from the
surface?

• Automated algorithm in place in October will be
accurate to about 0.5-1K.
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Long Wave Discriminants

• How accurate are split window/prediction methods?

2616 cm-1
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Long Wave Discriminants
• Current algorithms use 900, 918, 938, 965, 1017, 1228 and

1237 cm-1,  1127 cm-1is the most transmissive channel?
• Absorption is 20x larger
• Impact of water vapor modulation on variance

15.0

12.0
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Conclusions

• Using input from science team, we are on schedule to have
automated cloud discriminants in PGE

• High thresholds applied to discriminants reduces error, but
false detections still occur.  Manual assessment required.

• Radiance prediction discriminants have an accuracy of
around 0.5-1K with current correlative data

• Accuracy assessment of long wave discriminants
progressing on schedule
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